
2019 13th European Conference on Antennas and Propagation 

(EUCAP), Krakow, 2019 

 

 

 

 

http://ieeexplore.ieee.org/
http://www.ieee.org/publications_standards/publications/rights/copyrightpolicy.html


Multi-Mode Antenna Concept based on Symmetry

Analysis of Characteristic Modes

Nikolai Peitzmeier1, Dirk Manteuffel1,
1Institute of Microwave and Wireless Systems, Leibniz University Hannover, Hannover, Germany,

peitzmeier@hft.uni-hannover.de

Abstract—A multi-mode antenna concept based on a symmetry
analysis of characteristic modes is presented for use in massive
MIMO antenna arrays. A hexagonal plate is chosen as the
basis of the antenna concept due to its interesting geometric
properties. In particular, a symmetry analysis using group theory
and representation theory is conducted in conjunction with a
characteristic mode analysis, yielding that a hexagonal plate
offers eight mutually orthogonal sets of characteristic surface
current densities. On this basis, eight uncorrelated antenna ports
are defined by means of the irreducible representations of the
symmetry group.

Index Terms—Group theory, characteristic modes, multiple-

input multiple-output (MIMO), multi-mode antenna, symmetry.

I. INTRODUCTION

The use of multi-mode antennas based on the theory of

characteristic modes [1]–[3] has been presented in [4] to be

a suitable approach for designing compact massive MIMO

antenna arrays for future wireless communication systems.

This is achieved by exciting different sets of characteristic

modes on a single antenna element. Due to the orthogonality

properties of the characteristic modes [2], the resulting antenna

ports are uncorrelated. This way, multi-mode antenna elements

with a compact form factor can be created, which may be

arranged in an array in order to enable massive MIMO [4].

The conventional approach for designing multi-mode an-

tennas using characteristic modes starts with a modal anal-

ysis of a given antenna. This analysis yields which modes

are significant for radiation [5]. After suitable characteristic

modes have been found, excitations are defined by inspecting

the corresponding characteristic surface current densities. In

recent designs, various excitation strategies are reported, e.g.

inductive coupling elements (ICE), capacitive coupling ele-

ments (CCE) or slots [4], [6]–[8]. Furthermore, feeding (and

matching) networks are often required as one antenna port

may consist of several feed points on the antenna, which is

usually attributed to symmetry properties of the characteristic

surface current densities.

The above-mentioned exemplary multi-mode antenna de-

signs offer up to four antenna ports. The simple question

arises whether more antenna ports can be realized by making

use of more significant characteristic modes, which would be

beneficial for massive MIMO according to [9]. This question

was examined in [10], where it was shown that, even though

there is a large number of significant characteristic modes,

only a limited number of uncorrelated antenna ports can be

created due to the correlation of the characteristic surface

current densities. It was further established that this correlation

is related to the symmetry of the antenna.

Based on these findings, this paper aims at systematically

exploiting the symmetry properties of characteristic modes in

order to create uncorrelated antenna ports. For this purpose, an

antenna geometry of high symmetry order, a hexagonal plate,

is chosen based on a thorough symmetry analysis applying

group theory and representation theory, which have already

been used in conjunction with the theory of characteristic

modes in [11]–[13] for other purposes. On this basis, it is

shown that such a hexagonal geometry offers eight uncorre-

lated antenna ports. The hexagonal plate is therefore proposed

as a starting point for the design of a multi-mode antenna

which has up to eight uncorrelated antenna ports and may be

arranged in a massive MIMO array (hexagonal tiling).

To this end, some important consequences of symmetry on

the theory of characteristic modes are introduced in section II.

After that, a symmetry analysis of the characteristic modes of

a hexagonal plate is performed in section III. Based on this, an

excitation is defined and analyzed in section IV. The results

are summarized and discussed in section V.

II. CONSEQUENCES OF SYMMETRY ON CHARACTERISTIC

MODES

The characteristic modes of an arbitrary perfectly electri-

cally conducting (PEC) antenna are defined by the following

generalized eigenvalue problem [2]:

X (Jν) = λνR (Jν) , (1)

where Jν denotes the ν-th characteristic surface current den-

sity (eigenfunction) of the antenna and λν the corresponding

eigenvalue. The linear operators R and X are the real and

imaginary part, respectively, of the complex impedance oper-

ator Z derived from the electric field integral equation (EFIE)

and the electric field boundary condition for perfect electric

conductors.

The total surface current density on an antenna can be

decomposed into a weighted sum of characteristic surface

current densities [2]:

J =
∑

ν

ανJν =
∑

ν

〈

Jν ,E
i
〉

1 + jλν
Jν =

∑

ν

‚

S
Jν ·EidS

1 + jλν
Jν ,

(2)



where αν is called the modal weighting coefficient and its nu-

merator is called the modal excitation coefficient. Ei denotes

the incident electric field impressed e.g. by an antenna port.

The integration is taken over the surface S of the antenna. The

modal weighting coefficient describes how well an excitation

couples to the ν-th characteristic surface current density and

can be used to evaluate the effectiveness of a chosen excitation.

Although the characteristic surface current densities are

orthogonal with respect to the impedance operator [2], they

are in general not orthogonal to each other, which is expressed

by the current correlation coefficient ρµν :

ρµν =
〈Jµ,Jν〉

‖Jµ‖ ‖Jν‖
=

‚

S
Jµ · JνdS

√

‚

S
Jµ · JµdS

√

‚

S
Jν · JνdS

. (3)

This has the consequence that correlated characteristic surface

current densities may not be excited separately, thus limiting

the number of achievable antenna ports [10].

In [11], however, it is demonstrated that the characteristic

surface current densities are basis functions of the irreducible

representations of the symmetry group of an antenna. This is

derived from the fact that the impedance operator in (1) is

invariant under those geometric transformations which leave

the antenna geometry invariant (symmetry operations). These

symmetry operations form a mathematical group, which is

called the symmetry group of the antenna [14].

The basis functions of the irreducible representations of the

symmetry group have important orthogonality properties [14],

which according to [11] apply to the characteristic surface

current densities as follows:
〈

J
(p)
m ,J(q)

n

〉

=

‹

S

J
(p)
m · J(q)

n dS = 0, (4)

unless p = q and m = n, where p and q denote different

irreducible representations of the symmetry group and m

and n different basis functions of a given representation.

Equation (4) states that, first, characteristic surface current

densities belonging to different representations are orthogo-

nal to each other and, second, characteristic surface current

densities forming a set of basis functions of the same multi-

dimensional representation are orthogonal to each other. The

number of mutually orthogonal sets of characteristic surface

current densities can therefore be derived from the irreducible

representations of the symmetry group of an antenna, which

will be made use of in the following sections.

III. SYMMETRY ANALYSIS OF HEXAGONAL PEC PLATE

In this section, an infinitely thin regular hexagonal PEC

plate with an edge length of 0.7 wavelengths (0.7λ) as shown

in Fig. 1 is analyzed. Its symmetry group is called D6

(Schoenfliess notation) and it consists of the following twelve

operations (with the Schoenfliess symbols in parentheses) [15]:

• the identity (E),

• the rotation by 60 ° about the z-axis (C6z),

• the rotation by −60 ° about the z-axis (C−1
6z ),

• the rotation by 120 ° about the z-axis (C3z),

x

y
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c
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Fig. 1. Hexagonal plate and coordinate system.

• the rotation by −120 ° about the z-axis (C−1
3z ),

• the rotation by 180 ° about the z-axis (C2z),

• the rotation by 180 ° about the x-axis (C2x),

• the rotation by 180 ° about the y-axis (C2y),

• the rotation by 180 ° about the diagonal a (C2a),

• the rotation by 180 ° about the diagonal b (C2b),

• the rotation by 180 ° about the diagonal c (C2c),

• the rotation by 180 ° about the diagonal d (C2d).

The symmetry group of the hexagonal plate has six ir-

reducible representations Γ(1) to Γ(6) [15]. The representa-

tions map square matrices to the operations of the symmetry

group which describe how the corresponding basis functions

transform under the symmetry operations. The representa-

tion matrices are shown in Table I [14]. There are four

one-dimensional representations Γ(1) to Γ(4) whose matrices

are scalars. Accordingly, only one basis function belongs

to each of these representations, which may be left either

invariant (multplication with 1) or inverted (multiplication

with −1) by the symmetry operations. Furthermore, there are

two two-dimensional representations Γ(5) and Γ(6) with two-

dimensional square matrices. A set of two basis functions be-

longs to each of these representations. A symmetry operation

applied to one of these functions yields a linear combination

of the two basis functions. Moreover, these two basis functions

are degenerate, i.e. they have the same eigenvalue independent

of frequency [11].

Now, the characteristic modes of the hexagonal PEC plate

are calculated using an in-house method of moments software.

A symmetric mesh is generated in order to reproduce the sym-

metry properties of the hexagonal plate. The edge length of the

hexagon (0.7λ) has been chosen so that there are exactly eight

significant characteristic modes (modal significance greater

than 1/
√
2) whose surface current densities all are different basis

functions of the irreducible representations. The characteristic

surface current densities of the significant modes are depicted

in Fig. 2, with the principal current directions denoted by

arrows. The modal significances are shown in Fig. 3, where

some higher order modes are also taken into account.

By means of the current densities, each characteristic mode

can now be assigned to one of the irreducible representations

of the symmetry group of the hexagonal plate. This is done by

applying the symmetry operations of the group to each current



TABLE I
REPRESENTATION MATRICES OF SYMMETRY GROUP D6 OF HEXAGONAL PLATE

D6 E C2z C3z C
−1
3z C6z C

−1
6z

Γ
(1)

1 1 1 1 1 1

Γ
(2)

1 1 1 1 1 1

Γ
(3)

1 −1 1 1 −1 −1

Γ
(4)

1 −1 1 1 −1 −1

Γ
(5)

(

1 0

0 1

) (

−1 0

0 −1

) (

−1/2 −
√
3/2

√
3/2 −1/2

) (

−1/2
√
3/2

−
√
3/2 −1/2

) (

1/2 −
√
3/2

√
3/2 1/2

) (

1/2
√
3/2

−
√
3/2 1/2

)

Γ
(6)

(

1 0

0 1

) (

1 0

0 1

) (

−1/2 −
√
3/2

√
3/2 −1/2

) (

−1/2
√
3/2

−
√
3/2 −1/2

) (

−1/2
√
3/2

−
√
3/2 −1/2

) (

−1/2 −
√
3/2

√
3/2 −1/2

)

D6 C2x C2y C2a C2b C2c C2d

Γ
(1)

1 1 1 1 1 1

Γ
(2)

−1 −1 −1 −1 −1 −1

Γ
(3)

1 −1 1 1 −1 −1

Γ
(4)

−1 1 −1 −1 1 1

Γ
(5)

(

1 0

0 −1

) (

−1 0

0 1

) (

−1/2
√
3/2

√
3/2 1/2

) (

−1/2 −
√
3/2

−
√
3/2 1/2

) (

1/2 −
√
3/2

−
√
3/2 −1/2

) (

1/2
√
3/2

√
3/2 −1/2

)

Γ
(6)

(

−1 0

0 1

) (

−1 0

0 1

) (

1/2 −
√
3/2

−
√
3/2 −1/2

) (

1/2
√
3/2

√
3/2 −1/2

) (

1/2 −
√
3/2

−
√
3/2 −1/2

) (

1/2
√
3/2

√
3/2 −1/2

)
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Fig. 2. Normalized surface current densities of significant characteristic
modes of hexagonal PEC plate with principal current directions at the edges
denoted by arrows. (a)-(h) Modes 1 to 8. (i) Colorbar.

density and evaluating the transformed current densities. As an

example, the surface current density of mode 7 (Fig. 2(g))

is invariant under all symmetry operations (multiplication

with 1). This means that the corresponding representation

matrices are all equal to one. Thus, the surface current

density of mode 7 is a basis function of the first irreducible

representation Γ(1). In the same way, those characteristic
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Fig. 3. Modal significances of hexagonal PEC plate.

TABLE II
ASSIGNMENT OF CHARACTERISTIC MODES OF HEXAGONAL PEC PLATE

TO IRREDUCIBLE REPRESENTATIONS OF SYMMETRY GROUP D6

Representation Characteristic modes

Γ
(1) 7

Γ
(2) 6; 17

Γ
(3) 5; 19

Γ
(4) 8; 18

Γ
(5) first 1; 9; 13

second 2; 10; 14

Γ
(6) first 3; 11; 15

second 4; 12; 16

surface current densities forming a pair of basis functions of

the two-dimensional representations can be identified. As an

additional clue, the two basis functions must have the same

eigenvalue, i.e. they are degenerate. For example, this is the

case for modes 1 and 2 (Fig. 2(a) and (b)). They belong to

the fifth representation Γ(5), which can be quickly checked
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Fig. 4. Characteristic current correlation of hexagonal PEC plate.

by applying the rotation by 180 ° about the z-axis (C2z),

leaving the two current densities inverted (multiplication with

the matrix
(

−1 0
0 −1

)

). By contrast, modes 3 and 4 (Fig. 2(c)

and (d)), which are also degenerate, belong to the sixth

representation Γ(6) which can be recognized by the fact that

their current densities are invariant under the rotation by 180 °

about the z-axis (multiplication with the matrix
(

1 0
0 1

)

). The

assignment of all characteristic modes to the irreducible rep-

resentations of the symmetry group of the hexagonal plate is

summarized in Table II.

The correlation of the characteristic surface current densities

according to (3) is evaluated in Fig. 4. It is confirmed that

characteristic surface current densities belonging to different

irreducible representations and those forming a pair of basis

functions of a two-dimensional representation are orthogonal

to each other. Hence, the hexagonal plate offers eight mutually

orthogonal sets of characteristic surface current densities, as

expected.

IV. EXCITATION OF HEXAGONAL PEC PLATE BASED ON

SYMMETRY ANALYSIS

The aim of this section is to make use of the orthogonality

of the eight sets of characteristic modes verified in the previous

section by defining eight uncorrelated antenna ports based on

the symmetry of the hexagonal plate.

The modal excitation coefficient in (2) has the same form

as the current correlation in (4). As a consequence, it is

purposeful to define the antenna ports so that they behave

like basis functions of the irreducible representations of the

symmetry group, thus exploiting the orthogonality properties.

To this end, the antenna ports need to consist of several feed

points which are driven simultaneously in such a way that they

transform according to Table I.

One solution, which uses only feed points at the edges of

the plate, is shown in Fig. 5. It may be derived manually or

by using automated procedures (projection operators [14]). It

is optimal in the sense that it consists of as few feed points
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Fig. 5. Port definition of hexagonal PEC plate. The small arrows denote half
the feed voltage of the large arrows. (a)-(h) Ports 1 to 8. (i) Assignment to
irreducible representations.
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Fig. 6. Absolute values of normalized modal weighting coefficients b of
hexagonal PEC plate excited according to Fig. 5.

as possible while fulfilling the symmetry requirements of the

different representations.

In order to evaluate the excitation, the feed points are

represented by small voltage gap sources in the method of

moments [16] and the normalized modal weighting coefficients

as defined in [17] are examined in Fig. 6. It is clearly visible

that the sets of characteristic modes excited by the antenna

ports are exactly those sets defined by the irreducible represen-

tations of the symmetry group listed in Table II, as intended.

It is noteworthy that some higher order modes also have



0

0.2

1

0.4

0.6

2

E
C

C

0.8

3

1

84

Port

7
65

Port

56 4
37

28 1 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
C

C

Fig. 7. Envelope correlation coefficients (ECC) of hexagonal PEC plate
excited according to Fig. 5.

comparatively high weighting coefficients which may have an

impact on the input impedance of the ports. Nevertheless, as

mutually orthogonal sets of characteristic modes are excited,

the antenna ports are uncorrelated, which is confirmed by the

envelope correlation coefficients (ECC) in Fig. 7 calculated

from the total radiated far fields [17].

It should be noted that this result is also valid if the idealized

sources used in the previous simulations are replaced by practi-

cal excitation elements as long as the symmetry of the resulting

antenna geometry is maintained, i.e. the symmetry group is

still D6. This can for example be achieved by using symmetric

inductive coupling elements (cf. [6]) or slots (cf. [4]) at the

feed points in Fig. 5.

V. CONCLUSION

A multi-mode antenna concept based on a hexagonal plate

is presented which is intended for use as an element of a

massive MIMO array. The antenna concept is developed by

systematically exploiting the symmetry properties of a regular

hexagon. By means of group theory and representation theory,

it is shown that there are eight mutually orthogonal sets of

characteristic modes. On this basis, eight uncorrelated antenna

ports are realized by inspecting the matrix representations.

The antenna ports and feed points defined in this work

can be used as a starting point for the next design steps,

which comprise implementing suitable excitation elements like

ICE or CCE and the design of a feed network as well as

impedance matching. As already discussed in section IV, the

antenna ports remain uncorrelated as long as the symmetry

of the complete antenna is maintained. It will be the focus

of upcoming research how well this criterion can be fulfilled

throughout the design process and what impact the excitation

elements, the feed network and other practical constraints

have. The final aim of this research campaign is the design

of a complete prototype based on the promising results of this

work.
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